On the Benefits of Randomly Adjusting Anytime Weighted A*

Abstract

o Anytime Weighted A™ (Hansen and Zhou,
2007; Hansen, Zilberstein, and Danilchenko,
1997) is an anytime heuristic search algorithm
that uses a weight to scale the heuristic to
manage the trade-off between solution quality
and running time.

e We propose a randomized version of this
algorithm, called Randomized Weighted A *
that randomly adjusts its weight at runtime

o RWA* typically outperforms AWA™ with static

weights on a range of benchmark problems.
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Figure: An example of two executions of AWA*. Weight=2.0 is
better when the available running time is contract 1.

Introduction

e Contract setting: A fixed computation time is
available to solve a problem.

e Trade-off: Higher weights lead to better
solutions in short-term.

e Best weight depends on the characteristics of
the domain, the details of the instance, and the
available computation time (contract duration).

e Tune best static weight for a problem (Hansen
and Zhou, 2007)

e Tune at runtime heuristically (Sun, Druzdzel, and
Yuan, 2007; Thayer and Ruml, 2009, 2008)

e Adjust at runtime using deep-RL (Bhatia,
Svegliato, and Zilberstein, 2021)

e Adjust at runtime randomly?
Advantage: simplicity, no hyperparameters, no

offline experimentation.
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of weights e.g., w ~ W ={1,1.5,2,3,4,5}.

e RWA™ maintains an open list corresponding to
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Figure: The solution quality box plots for the Sp, Isp, T'sp,
and CNP benchmark problems (top-left to bottom-right). The
crosses denote the mean and the bullets denote the outliers.

Random weight w ~ W. Pop node with least f,,, value.
Remove from the all open lists.

Expand node and insert children into the all open lists.
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Figure: Differences between RWA* and AWA*
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Experimental Setup
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sRWA* w ~ {1,1.5,2,3,4,5} vs AWA* with ' _
static weights 1, 1.5, 2, 3, 4, 5 (commonly used). 22 zi
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Figure: The performance bar graphs for the Sp, Isp, T'sp, and

City-Navigation-Problem (CNP)
CNP benchmark problems (top-left to bottom-right).

¢ 500 instances per domain of varying difficulty.

» Node-expansions budget (contract) of 6000
for Sp, Isp and 3000, 2400 for T'sp, CNP.
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o RWA* computes solutions with a higher
quality on average than any static weight,
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@ has the highest probability of computing
a solution that is at least as good as any
other approach,

S
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®has the highest probability of computing

at least one solution compared to any static
weight. Figure: Each approach compared across a range of contract
durations on Sp, Isp, T'sSp, CNP (top-left to bottom-right).
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Figure: RWA* (left) and AWA* with a weight of w = 3 and
w = 5 (center and right) on a specific instance of the Sp
benchmark problem. The weight curves are smoothed and
plotted on the secondary vertical axis.
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Conclusion

e RWA™* (i) computes better solutions on average,
(ii) exhibits a higher probability of computing
any solution at all, and (iii) exhibits a higher
probability of computing a solution at least as
oood as any static weight of AWA* in a contract
setting across a range of contract durations on
our benchmark domains.

e RWA* is appealing because it is easy to
implement and eflfective without any
extensive offline experimentation or
parameter tuning.
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